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Manuscript: 
 
The propagation of elastic waves in crystals obeys Newton's law of motion: 

ρ∂ ∂ ∂σ ∂
2 2
u t xi ij j/  =  /   (Eq.1) 

Using the constitutive equations for a linear elastic solid relating stress and strain, to 
obtain an equation with only one unknown vector: 
σ ∂ ∂ij ijklC u xl k=   /   (Eq.2) 
Equation one becomes: 

ρ∂ ∂ ∂ ∂ ∂
2 2 2
u t C u x xi ijkl l j k/  = /   (Eq.3) 

Where Cijkl is the tensor of elastic constants with 81 components.  Symmetry of stress 
components however reduces the constants to 36 components where: 

Cijkl = Cjikl = Cijlk = Cjilk 
The existence of strain energy function further reduces the number of constants to 21. 

Cijkl = Cklij  
The crystalophysical coordinate system used to measure the elastic constants is chosen 
along fixed crystalographic crystal axis, which reduces the number of elastic constants 
and simplifies the solution of the Green Christoffel equation.  This coordinate system is 
usually set up along the symmetry axis of the crystal.  The directions of the 
crystalophysical and crystallographic axis coincide in case of the cubic crystal.   
The elastic constants of the cube with respect to a different reference frame can then be 
obtained by coordinate transformations of the form Aij=αikαjlAkl. 
With the Cartesian coordinate system set up along any axis, anywhere in the crystal, and 
if from that point a normal n called the wave normal is drawn in any direction, there are 
three possible phase velocities and corresponding displacement directions in which a 
wave could travel at that point.  The phase velocities and their direction changes if the 
direction of the wave normal is changed.  The highest phase velocity v3, which is 
polarized in the direction of the wave normal, is called "Quasi-Longitudinal/Compression 
wave" velocity and the other two, v1 and v2, are called "Quasi-Transverse/Shear wave" 
velocities with displacement directions in a plane perpendicular to the first.  Except for 
special directions of crystal symmetry, the quasi-longitudinal wave displacement 
direction is not parallel to the wave normal, but is pointed at a small angle from it.  When 
the displacement direction is parallel to the wave normal the wave is called a "pure 
longitudinal wave".  The axis along which transverse shear waves of equal velocity 



associated with the wave normal may propagate with any wave polarization is called the 
acoustic axis. 
The solution of equation-1 for the displacement vector of a plane wave may be put as: 
u x t A F t n x n x n xi i( , ) ( ( ) / )= ⋅ − + +1 1 2 2 3 3 v  
Where Ai is the amplitude of the displacement along the i-th axis, and n1, n2, and n3 are 
the components of the unit vector normal to the wave front. 
Differentiation of ui(x,t) and substitution in left side of equation-1 gives : 

∂ ∂
2 2
u t A Fi i/  = ′′ 

∂ ∂u x A n Fl j l j/ /= − ⋅ ′v  

∂ ∂ ∂
2 2
u x x A n n Fi l j kj k/  = v/ ⋅ ′′  

Substituting in equation-3: 
ρA F C A nni ijkl l j k′′ =  
Introducing Acoustic tensor Γil ijkl j kC n n=  in equation-3 and simplifying, yields: 

Γil il− =ρ δv
2

0   (Eq.4) 

Equation-4 is referred to as Christoffel's Equation or the Secular Equation and solution of 
the determinant provides us with a cubic equation, the roots of which are the eigenvalues 
of the Γil tensor.  The eigenvalues of the Γil tensor are the phase velocities of the wave 
propagating in the medium in a given direction.  The eigenvectors of the Γil tensor give us 
the directions of the displacement vector for the corresponding phase velocities of the 
waves propagating in the crystal. 
The Γil tensor has in general three distinct eigenvalues (phase velocities) and eigenvectors 
(displacement directions) in any given direction of the wave normal n.  The three 
eigenvalues have in general different values, except for special directions of symmetry. 
The slowness surfaces have three sheets with the slowness surface corresponding to the 
quasi-longitudinal wave with the highest phase velocity contained in the other two 
surfaces.  This means that a line drawn parallel to the wave normal from the origin will in 
general intersect the surfaces three times.  For crystals of most materials in certain 
directions, the slowness surfaces do in fact cross one another or become tangent.  In the 
crystal of Gallium Arsenide for example, the three slowness surfaces do not cross one 
another along the face of the cube but become tangent along the acoustic axis.  Cross 
section of the plane of the diagonal of the cube shows that the pure shear wave crosses 
the quasi shear wave along the three-fold axis of symmetry of the cube. 
The magnitude and direction of waves propagating in an elastic solid has been modeled 
with a worksheet developed within Mathcad computer software program to use the elastic 
constants of the material to setup the Γil tensor of equation 4 and solve for the determinant 
on the left side.  Solution of the determinant incorporates solving a cubic equation with 
coefficients of the Γil tensor which are made up of the direction cosines of the wave 
normal coupled with the elastic constants in the form, Γil ijkl j kC n n=  .  The wave normal, 
in general, has direction cosines n1=sinθ cosα , n2=sinθ sinα and n3=cosθ, where α is 
the angle between the projection of the wave normal on the x-y plane and the x axis, and 
θ, is the angle between the wave normal and the z axis called the polar angle, as in 
spherical coordinate system.  As an example, the Γ11 term would look like: 
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The roots of the cubic equation found by an algebraic subroutine displays the roots in the 
customary form with decreasing orders of magnitude.  This means that v3>v2>v1 for 
every direction of the wave normal where the eigenvalues are distinct. In crystal of 
Gallium Arsenide(GaAs), 43m, with the wave normal parallel to the xy plane, the three 
surfaces do not cross one another.  They become tangent along the acoustic axis.(Figure-
1)  For special directions of the wave normal, however, the cubic equation factors into a 
linear term and a quadratic term analytically and gives us the value of one of the 
velocities directly.  This velocity is greater than the other velocities in some directions 
and is smaller than them in other directions as can be seen in figure-3. 
With the wave normal along the cube diagonal, however, the Pure shear wave v2 is 
greater than pure Quasi shear wave v1 for θ of about 0 degrees to about 45 degrees, and 
is smaller than v1 for θ between 45 and 90 degrees.  In other words, the two surfaces v2 
and v1 do in fact cross one another.  This result is obvious if the velocities are solved for 
analytically.  If the eigenvalues are solved for numerically however, then v2 is always 
greater than v1, and the two surfaces never cross one another.  To plot the slowness 
surfaces using the computer program, the velocities were solved for directly by solving 
for the larger root and plugging back into the cubic equation to solve for the remaining 
quadratic equation after it’s extraction.  In this case, v2 was always greater than v1  the 
two surfaces did not cross one another.  The plot of the incorrect and correct velocity 
surfaces are shown in Figures 2 and 3, respectively.  An extensive computation of the 
slowness surfaces of crystals of cubic symmetry was carried out by Miller and Musgrave 
in 1956. Wire models were used to help describe the various irreducible portions of the 
wave surfaces. 
Directions of wave propagation where the acoustic tensor is simplified by analytical 
methods is illustrated by the following example. 
Gallium Arsenide(GaAs, Cubic), 43m, has the following elastic constants: 
c11=11.88x1010, c12=5.38x1010, c44=5.94x1010 [Newtons/m2]. 
If the propagation vector is directed parallel to X-Y plane on the cube face, the secular 
equation can be factored and solved analytically.  With the wave normals n1=cosα, 
n2=sinα and n3=0, the Γil tensor takes the form: 
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With components: 

Γ11 11
2

44
2

= +c ccos sinα α   2/2sin)( 441212 α⋅+=Γ cc  

Γ22 11
2

44
2

= +c csin cosα α    αα 2
44

2
4433 sincos cc +=Γ Substituting in 

the determinant and solving for the velocities we obtain: 

ρααρ /sincos/v 2
44

2
44331 cc +=Γ=  

ρ⋅
Γ⋅+Γ−Γ±Γ+Γ= 2
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Note that the solution v1 is the factored linear term directly obtained to be  

ρρ //v 44331 c=Γ=   which is a pure shear wave shown in Figure-1. 
The quasi-longitudinal and quasi shear waves are obtained by solving the quadratic part.  
Note that in this cross section the slowness surfaces do not cross one another but have the 
same magnitude along the acoustic axis, along the fourfold crystal axis.  This solution 
and surface plot can easily be obtained by the computer worksheet since the surfaces do 
not cross one another in all the directions of the polar angle α.  Proper interpretation of 
the results is a must however and one should not rely solely on the computer program.  

 
Figure 1. Slowness surface for GaAs Wave normal Parallel to xy plane 

Crossection of xy plane 
Next we direct the propagation vector along the diagonal plane of the cube.  The secular 
equation can be factored and solved analytically after performing the proper coordinate 
transformations on the stiffness matrix.  With the wave normals n1=sinθ, n2=0 and 
n3=cosθ, and α=45 degrees, the Γil tensor takes the form: 
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With components: 

Γ ' ' sin ' cos11 11
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= +c cθ θ   Γ ' ( ' ' / ) sin13 13 44 2 2= + ⋅c c θ  
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= +c cθ θ  
Where c'11, c'22, etc., are the stiffness constants of the crystal in the rotated reference 
frame, obtained by coordinate transformation. In this case 45 degrees about the z axis and 
45 degrees about the transformed y axis.  Substituting in the determinant and solving for 
the eigenvalues we obtain: 

ρθθρ /cos'sin'/'v 2
44

2
66222 cc +=Γ=  
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The pure shear wave v2 with the displacement direction parallel to the X-Z plane is 
obtained readily as a linear factor multiplied by a quadratic term to make up the cubic 
equation, which results from solving for the determinant of the Γil tensor.(Figure-3)    
Graph of the Slowness surfaces obtained by the computer program, however, shows the 
three surface contained within one another as v3>v2>v1 in all directions.(Figure-2) 

 
Figure 2. Slowness surface for GaAs,Wave normal along cube diagonal 

Plot of Computer Program 

 
Figure-3  Slowness Surface for GaAs, Wave normal along cube diagonal 

Plot of Analytical Solution 
For a second example we look at the crystal of Tellurium dioxide.  Tellurium dioxide 
(Tetragonal 422) has the following elastic constants: c11=5.57x1010, c12=5.12x1010, 
c13=2.18x1010, c33=10.58x1010, c44=2.65x1010, c66=6.59x1010 [Newtons/m2].  If the 
propagation vector is directed parallel to the X-Z plane, the secular equation can be 



factored and solved analytically.  With the wave normals n1=sinθ , n2=0 and n3=cosθ, 
and α=0 degrees, the Γil tensor takes the form: 
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With components: 
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Solving for the eigenvalues of the Γil matrix:  
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Where the pure shear wave is readily obtained from the linear term, (Γ22-λ)=0 
as:  

ρθθρ /cossin/v 2
44

2
66222 cc +=Γ=  

The longitudinal and transverse shear waves are obtained by solving the quadratic term 
as: 

ρ⋅
Γ⋅+Γ−Γ±Γ+Γ= 2
134)3311(3311

3,1
2 22

v  
As we can see in the compliance tensor c66>c11, and c44 is as usual smaller than c11 .  If 
we plot the slowness curves for the crossection on the face of the cube x-z, we can see 
that the curve for the longitudinal wave v3 crosses the curve v2 for the pure shear wave 
along the x axis.  This can be seen in figure-4. 

 
Figure-4.  Propagation of waves in TeO2.  Wave normal parallel to 

X-Z plane. Plot of Analytical Solution 



The same crossection is plotted by the Mathcad worksheet, which calculates the 
eigenvalues by numerically solving the cubic equation.  The velocity surfaces v2 and v3 
do not cross one another in this case.(Figure-5)  

 
Figure-5.  Slowness Surface for TeO2, Wave normal parallel to 

 X-Z plane.  Plot of Computer Solution 
 
Conclusion: 
 
The equation of propagation of acoustic waves in crystals was derived from Newton's 
second law and solved for using conventional methods of tensor calculus and linear 
algebra.  Propagation of elastic waves was investigated for crystals of cubic and 
tetragonal classes by generating slowness surfaces for various directions of crystal 
symmetry.  The characteristic equation, which results from attempting to solve of the 
Green Christoffel equation, is a third degree polynomial which can not be solved directly 
to obtain the eigenvalues.  General methods of solution to the cubic equation are not 
suitable for numerical computation and do not provide the correct inverse velocity 
surfaces.  Analytical solution may be used for special directions of crystal symmetry 
where the third degree polynomial can be factored to a linear and a quadratic term but for 
other directions, wire models have been known to help describe the correct surface.  
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Appendix: 
 
Three-dimensional graphs of the slowness surfaces generated by the computer worksheet 
(which does not incorporate intersection of surfaces for v1 and v2) for v1, v2 and v3 of 
Gallium Arsenide are incorporated for information purposes. 

Slowness Surface 1/v1 For Gallium Arsenide 
Worksheet Solution 
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Slowness Surface 1/v2 For Gallium Arsenide 
Worksheet Solution 

 

 
Slowness Surface 1/v3 For Gallium Arsenide 

Worksheet Solution 
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