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Manuscript:

The propagation of eastic wavesin crystas obeys Newton's law of motion:

FTu/ Nt = s /9% (Eq.1)

Using the condtitutive equations for alinear dadtic solid relating stress and dtrain, to
obtain an equation with only one unknown vector:

Sij = Cijui / X« (Eq.2)

Equation one becomes:

r ﬂZUi Al t2 = Cijk|ﬂZU| [ XX« (EQ.3)
Where Ciji isthe tensor of elastic constants with 81 components. Symmetry of stress
components however reduces the constants to 36 components where:

Cijxi = Gjik = Gijik = Gk
The existence of grain energy function further reduces the number of congtantsto 21.

Cijki = Cuijj

The crystaophysica coordinate system uszedJ to meeshre the dagtic congtants is chosen
aong fixed crystaographic crystd axis, which reduces the number of dastic congtants
and smplifies the solution of the Green Christoffd equation. This coordinate sysem is
usudly set up dong the symmetry axis of the crystd. The directions of the
crystaophysica and crystalographic axis coincide in case of the cubic crysal.
The éagtic congtants of the cube with respect to a different reference frame can then be
obtained by coordinate transformations of the form Aij:a iI(a“AkI.
With the Cartesan coordinate systlem set up dong any axis, anywhere in the crystd, and
if from that point anormal n caled the wave normd is drawn in any direction, there are
three possible phase vel ocities and corresponding displacement directions in which a
wave could traved at that point. The phase velocities and their direction changes if the
direction of the wave normd is changed. The highest phase velocity v3, which is

polarized in the direction of the wave normd, is cdled "Quas-Longitudind/Compresson
wave" velocity and the other two, v1 and vo, are caled "Quasi- Transverse/Shear wave'

velocities with displacement directionsin a plane perpendicular to the first. Except for
gpecid directions of crystal symmetry, the quas-longitudind wave displacement
direction is not pardld to the wave normd, but is pointed at asmal anglefromit. When
the digplacement direction is pardld to the wave normd the waveis cdled a"pure
longitudind wave'. The axis aong which transverse shear waves of equa ve ocity



associated with the wave norma may propagate with any wave polarization is cdled the
acoudtic axis.

The solution of equationt1 for the displacement vector of a plane wave may be put as.
ui(X,t) = AitF(t- (NX1+n2X2+NsXs)/ v)

Where Aj is the amplitude of the displacement dong the i-th axis, and g, np, and ng are
the components of the unit vector normd to the wave front.

Differentiation of yj(x,t) and substitution in left side of equation-1 gives:

Tul/Tt = AF

Tu /9% =- Amnj/v:F(

Tu /XM = Anine/ v o @

Subdtituting in equation-3:

r AiF « = Cijw Ainink

Introducing Acoustic tensor Gii = Cijwhjink in equation-3 and smplifying, yidds

‘GI i rvzdu‘ =0 (Eq4)

Equation-4 isreferred to as Chrigtoffel's Equation or the Secular Equation and solution of
the determinant provides us with a cubic equation, the roots of which are the eigenvalues
of the G tensor. The eigenvalues of the G, tensor are the phase velocities of the wave
propagating in the medium in agiven direction. The eigenvectors of the G tensor give us
the directions of the displacement vector for the corresponding phase velocities of the
waves propagéting in the crystd.

The G tensor hasin generd three digtinct e genva ues (phase velocities) and eigenvectors
(displacement directions) in any given direction of the wave normd n. Thethree
elgenvalues have in generd different vaues, except for specid directions of symmetry.
The downess surfaces have three sheets with the downess surface corresponding to the
quasi-longitudind wave with the highest phase velocity contained in the other two
surfaces. Thismeansthet aline drawn pardld to the wave norma from the origin will in
generd intersect the surfaces threetimes. For crystals of most materiasin certain
directions, the downess surfaces do in fact cross one another or become tangent. Inthe
crystd of Gallium Arsenide for example, the three downess surfaces do not cross one
another along the face of the cube but become tangent aong the acougtic axis. Cross
section of the plane of the diagond of the cube shows that the pure shear wave crosses
the quas shear wave dong the three-fold axis of symmetry of the cube.

The magnitude and direction of waves propagating in an dastic solid has been modeled
with aworksheet devel oped within Mathcad computer software program to use the eastic
congtants of the materid to setup the G; tensor of equation 4 and solve for the determinant
on theleft Sde. Solution of the determinant incorporates solving a cubic equation with
coefficients of the G; tensor which are made up of the direction cosines of the wave
norma coupled with the éagtic congants in the form, Gii = Cjknink . The wave normd,
in generd, has direction cosines =dng cosa , np=3ng sna and n3=cosg, wherea is
the angle between the projection of the wave norma on the x-y plane and the x axis, and
g, isthe angle between the wave norma and the z axis cdled the polar angle, asin
sphericd coordinate system. As an example, the G;; term would look like:

Gu1= C11ni® + Ces2? + CssNs® + 2C16NiN2 + 2C15MN3 + 2Cs6N2N3



The roots of the cubic equation found by an dgebraic subroutine displays the rootsin the
customary form with decreasing orders of megnitude. This means that v3>vo>vq for
every direction of the wave normal where the eigenvalues are distinct. In crystal of
Gallium Arsenide(GaAs), 43m, with the wave norma pardld to the xy plane, the three
surfaces do not cross one another. They become tangent aong the acoustic axis.(Figure-
1) For specid directions of the wave normal, however, the cubic equation factorsinto a
linear term and a quadratic term andyticaly and gives us the vaue of one of the
velocities directly. Thisveocity is greater than the other velocitiesin some directions

and is smdler than them in other directions as can be seenin figure-3.

With the wave norma aong the cube diagonal, however, the Pure shear wave v is
greater than pure Quas shear wave vq for g of about O degrees to about 45 degrees, and
issmadler than vq for q between 45 and 90 degrees. In other words, the two surfaces vo
and v1 doinfact cross one another. Thisresult is obviousif the velocities are solved for
anayticdly. If the e@genvalues are solved for numericaly however, then vo isaways
greater than v1, and the two surfaces never cross one another. To plot the downess
surfaces using the computer program, the velocities were solved for directly by solving
for the larger root and plugging back into the cubic equation to solve for the remaining
quadratic equation after it's extraction. Inthis case, v was adways greater than vq the
two surfaces did not cross one another. The plot of the incorrect and correct velocity
surfaces are shown in Figures 2 and 3, respectively. An extensive computation of the
downess surfaces of crystas of cubic symmetry was carried out by Miller and Musgrave
in 1956. Wire models were used to help describe the various irreducible portions of the
wave surfaces.

Directions of wave propagation where the acoustic tensor is smplified by anaytica
methodsisillustrated by the following example.

Gdlium Arsenide(GaAs, Cubicz, 43m, has the following dastic congtants:
11=11.88x10%, €1,=5.38x10"°, €44=5.94x10"° [Newtons/n?].

If the propagation vector is directed pardld to X-Y plane on the cube face, the secular
equation can be factored and solved andyticaly. With the wave normals m=cosa,

np=sna and nz=0, the G; tensor takes the form:
Cu G2 O
Gi:=1G2 G2 O

0 0 Gss
With components.

2 . 2 .
Cii=cucCos a+csa9n a Ci2=(Ciz+Cas):9n 22 /2

L2 2 } e .
C22=cusn a+Cacos a Gss = caaCOS”a + Casdin > a Subditutingin
the determinant and solving for the velocities we obtain:

V1= 3 = 4/ Caa 249
JGae/t =./cucos?’a +cusn’a/r

_ 2
V2az= (11+GZ&1/((1; G222 +43G12




Note that the solution vy isthe factored linear term directly obtained to be

vi=4/Gss/1 =.[cu/r  whichisapure shear wave shown in Figure-1.

The quas-longitudina and quas shear waves are obtained by solving the quadratic part.
Note that in this cross section the downess surfaces do not cross one another but have the
same magnitude adong the acoudtic axis, aong the fourfold crysta axis. This solution

and surface plot can easily be obtained by the computer worksheet since the surfaces do
not cross one another in dl the directions of the polar anglea. Proper interpretation of
the resultsis amust however and one should not rely solely on the computer program.
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Figure 1. Sowness surface for GaAs Wave normd Pardld to xy plane
Crossection of xy plane

Next we direct the propagation vector along the diagond plane of the cube. The secular
equation can be factored and solved andytically after performing the proper coordinate
transformations on the stiffness matrix. With the wave normas m=sng, np=0 and
n3=cosq, and a =45 degrees, the G, tensor takes the form:

Cu 0 C's
Gi={ 0O G2 O

G 0 Gas
With components.
C'u=Cusn q +C'aaCOS q C'1z=(C'13+C'44/ 2):9n 2
C'22 =C'e69N ’ q +c'44cos2 o} C'sz3=C'aa9nN ’ g+ c'330052 o}
Where c'11, c'22, €c., are the stiffness congtants of the crysta in the rotated reference
frame, obtained by coordinate transformation. In this case 45 degrees about the z axis and

45 degrees about the transformed y axis. Subgtituting in the determinant and solving for
the egenvaues we obtain:

Va=./Gz/r = Jc'eesn 2q +c'scos®q /1

2 _ GlHG33t/(Gll G33°+4G13
V31= %




The pure shear wave v with the displacement direction pardld to the X-Z planeis

obtained readily as alinear factor multiplied by a quadratic term to make up the cubic
equation, which results from solving for the determinant of the G; tensor.(Figure-3)

Graph of the Slowness surfaces obtained by the computer program, however, showsthe

three surface contained within one another as vs>v»>Vv; in dl directions.(Figure-2)
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Figure 2. Slowness surface for GaAs,Wave norma aong cube diagond
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Figure-3 Sowness Surface for GaAs, Wave norma along cube diagond

Plot of Analyticd Solution

For a second example we look at the crysta of Tellurium dioxide. Tdlurium dioxide
(Tetragona 422) has the following elastic constants: ¢11=5.57x10%°, ¢1,=5.12x10%,

C15=2.18x10"°, c33=10.58x10™°, €44=2.65x10'°, cs6=6.59x10'° [Newtons/n?]. If the

propagation vector is directed parald to the X-Z plane, the secular equation can be



factored and solved analyticaly. With the wave normals mp=dnq , np=0 and ng=cosq,
and a =0 degrees, the G tensor takes the form:

Cu 0 Cu
G-l 0 G2 O
Gs 0 Gess
With components:
Gu=cusdn’ q+C55C052q Cis=(Cis+Css) /2:9n 2Q
Cz22 = Ces9N ’ q +C55cos2 q Css =Cs59N ’ q+ C33C052 o}
Solving for the egenvaues of the Gil marix:
(Ga-1) 0 G
0 (Ge2- 1) 0 =(Gez- | )[(G1- 1 ) YGez- | ) - G&°]
Gs 0 (Ges- 1)

Where the pure shear wave is readily obtained from the linear term, (Gy2-1 )=0
as

V2 =[Gzl T =a[Cossin >q + cascos?q /1
The longitudina and transverse shear waves are obtained by solving the quadratic term
as.

2 _ QHG3(GALGR+4GET
V3= 2x
As we can see in the compliance tensor cgg>C1 1, and c44 isasusud smdler thancqq . If

we plot the downess curves for the crossection on the face of the cube x-z, we can see
thet the curve for the longitudinal wave v3 crosses the curve v for the pure shear wave

adong the x axis. Thiscan be seenin figure-4.

0.000476, T T T

) nfe)
et
@'l-m(ai)

0000476, 6"11) l-sin((B].D . @2]) l-s:in(B].) . (‘,33-1“1(3’_) 0000476,

S0.000476,

Figure-4. Propagation of wavesin TeO2. Wave normal parale to
X-Z plane. Flot of Andytical Solution



The same crossection is plotted by the Mathcad worksheet, which caculates the
eigenvaues by numericaly solving the cubic equetion. The velocity surfaces vp and v3

do not cross one another in this case.(Figure-5)
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Figure-5. Sowness Surface for TeO2, Wave normd pardld to
X-Z plane. Plot of Computer Solution

Conclusion:

The equation of propagation of acoustic wavesin crystals was derived from Newton's
second law and solved for using conventiona methods of tensor caculus and linear
agebra Propagation of dastic waves was investigated for crystals of cubic and
tetragonal classes by generating downess surfaces for various directions of crysta
symmetry. The characteristic equation, which results from attempting to solve of the
Green Chrigtoffd equation, is athird degree polynomia which can not be solved directly
to obtain the eigenvaues. Genera methods of solution to the cubic equation are not
suitable for numerica computation and do not provide the correct inverse velocity
surfaces. Andytica solution may be used for specid directions of crystal symmetry
where the third degree polynomia can be factored to alinear and a quadratic term but for
other directions, wire models have been known to help describe the correct surface.
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Appendix:

Three-dimensiond graphs of the downess surfaces generated by the computer worksheet
(which does not incorporate intersection of surfaces for v1 and vo) for vq, vp and v3 of

Gdlium Arsenide are incorporated for information purposes.
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X,Y,Z
Slowness Surface 1/v; For Galium Arsenide
Worksheat Solution



X, Y, Z
Slowness Surface 1/v» For Gdlium Arsenide
Worksheat Solution
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Slowness Surface 1/vs For Galium Arsenide
Worksheet Solution
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